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5 ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland
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Abstract
One of the challenges in soft and condensed matter over the last few years has been
understanding the phenomena of glass and jamming transitions. A recent advance in the field is
the idea that the dynamical heterogeneities play here the same role as the critical fluctuations in
ordinary critical phenomena. This is due to the fact that the decay of density fluctuations in
glasses and jammed systems takes place thanks to the dynamically correlated motions of groups
of particles. In this paper, after a brief review of the properties of the dynamical heterogeneities
in glasses we analyze the cases of chemical and colloidal gels, which are still intensely debated.

1. Introduction

Glasses, colloidal and chemical gels, granular materials and
foams are examples of systems which, by changing the control
parameters, exhibit slow dynamics followed by a structural
arrest, often called jamming. Understanding this jamming
transition is still one of the major problems in soft and
condensed matter physics. For example, the question whether
the jamming or glass transitions are based or not on a true
underlying phase transition is still open. Developments of
the Adam and Gibbs’ theory [1] and the analogy with the
spin glass transition have suggested the idea that dynamical
heterogeneities (DH) in the glass transition might play the
same role as critical fluctuations in critical phenomena. Since
then, the concept of DH seems very promising to distinguish
between competing theories and understanding differences and
universality in the jamming transition. Here we will exploit this
idea to investigate the nature of structural arrest in chemical
and colloidal gels. This question is also extremely interesting
because of the many industrial applications of gels going from
toothpaste to gelatins, paints and beauty products, just to
mention a few of them relevant to our practical life.

In the following, we start by reviewing the main results
of mode coupling theory (MCT) for the glass transition. We
then introduce the concept of DH in glasses and hard sphere
colloids and discuss the predictions of MCT. Then we analyze

the striking differences among DH in models of chemical gels,
colloidal gels and glasses. This paper is based both on new
results and on the elaboration of results previously published.

2. Mode coupling theory and the glass transition

Upon cooling a liquid, a melting temperature is reached
below which the system shows a crystalline order. However,
depending on the cooling procedure, the transition may be
avoided and the system enters a supercooled metastable state
until it gets out of equilibrium in a glassy state. The
temperature where such a transition occurs depends on the
cooling rate. With an infinitely slow cooling rate, one should
reach the lowest glass transition temperature T0, often referred
to as the ideal glass transition. Certainly, the striking feature of
the glass transition is that the shear viscosity or the relaxation
time varies by many orders of magnitude over a small range
of temperatures, whereas no meaningful change is observed
in the static structure factor of the system. The temperature
dependence of the viscosity coefficient of the supercooled
liquid can be fitted with an Arrhenius or Vogel–Fulcher law,
which distinguishes a strong from a fragile glass according to
Angel’s classification [2].

An important advance in the understanding of these
phenomena was obtained when Götze and his collaborators [3]
proposed the MCT for the glass transition. Starting from first
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Figure 1. Schematic behavior of the intermediate scattering function,
F(k, t), in the mode coupling theory.

principles, they derived an equation for the time evolution
of a typical autocorrelation function, e.g. the intermediate
scattering function (ISF) F(k, t), leading to a number of
precise dynamical predictions. F(k, t) is defined as

F(k, t) =
∑N

i, j=1〈ei�k·(�ri (t)−�r j (0))〉
S(k)

, (1)

where �ri (t) is the position of the i th particle at time t , 〈. . .〉
is the ensemble average and S(k) = ∑N

i, j=1〈ei�k·(�ri −�r j )〉 is the
static structure factor.

In a simple liquid, at high temperature, F(k, t) decays
exponentially. At low temperature, instead, deep in the
supercooled regime, a two-step decay is found: a first decay
to a plateau is followed by a second decay from the plateau to
zero (figure 1). The decay to the plateau and the departure from
it are characterized by power law behaviors. The exponent 0 <

a < 0.5 fixes the short-time behavior, F(k, t) ∼ f + At−a ,
whereas the departure from the plateau is characterized by the
so-called von Schweidler law F(k, t) ∼ f − Btb, where
0 < b � 1. These exponents are related via the following
equation:

�2(1 − a)

�(1 − 2a)
= �2(1 + b)

�(1 + 2b)
, (2)

and give the exponent γ = 1
2a + 1

2b which governs the power
law divergence of the structural relaxation time τ ∼ (T −
Tc)

−γ .
At high temperature, the particle mean square displace-

ment displays a diffusive behavior as in a simple liquid. In the
supercooled regime of low temperatures, instead, it exhibits a
sub-diffusive regime approaching a plateau, and eventually it
crosses over, in the long-time regime, to a diffusive behavior.
These features of the mean square displacement and F(k, t)
have led to the picture of a particle close to the glass transition
being confined, due to the crowding, in a cage formed by its
neighbors until the cage opening allows the particles to get out
and eventually get trapped in another cage. The predictions of
MCT are rather well verified experimentally and numerically
for colloidal systems and at least on a short timescale for
molecular liquids (see, for example, [4]). Although the
assumptions underlying MCT are not easily controlled, it has
been shown [5] that in the mean field version of the p-spin
model the spin–spin autocorrelation function follows a time
evolution equation which is identical to that obtained in the

simplified version of MCT. This has suggested that MCT
corresponds in fact to a mean field approximation, and that
the MCT critical temperature TC is a temperature below which
an infinite number of metastable states separated by infinite
energy barriers appear where the system gets trapped with
subsequent breakdown of ergodicity. However, in a real three-
dimensional system, the barriers are not infinite and TC should
be considered as a crossover temperature towards a hopping
regime where the relaxation time, albeit large, is still finite.

3. Dynamical heterogeneities

A somehow alternative theory, proposed by Adam and
Gibbs [1], introduced the concept of cooperatively rearranging
regions. The main idea is that, close to the glass transition,
due to the crowding of particles, the decay towards equilibrium
of a density fluctuation is due to a cooperative rearrangement
of correlated regions. The theory has been revisited by
Kirkpatrick et al [6]. Later these concepts have been further
developed by Cicerone and Ediger [7] who introduced the
concept of DH, further elaborated and quantified in [8, 9].
DH are associated with groups of particles whose motion is
dynamically correlated both in space and time. The size of such
groups of particles significantly grows as the glass transition is
approached [10–19].

Other approaches based on facilitated models [20] suggest
that the dynamics are governed by ‘mobility defects’. These
also lead to DH characterized by bubbles in space and time,
i.e. arrested domains in the trajectory space [21].

How to quantify the DH? A four-point correlation function
has been introduced [8, 9], in analogy with spin glasses:

G4(�r , t) = 〈ρ(0, 0)ρ(0, t)ρ(�r , 0)ρ(�r , t)〉
− 〈ρ(0, 0)ρ(0, t)〉〈ρ(�r , 0)ρ(�r , t)〉, (3)

where ρ(�r , t)〉 is the density at position �r and time t . Since
particles during the time t cannot be exactly in the same
position, one usually introduces an overlap function w(r) = 1,
if r < a and 0 otherwise, and substitute ρ(�r , 0)ρ(�r , t) with∫

w(r ′)ρ(�r , 0)ρ(�r + �r ′, t) d�r ′. This quantity is different from
zero if a particle in �r has moved a distance less than a in the
time interval t . On this basis, G4(�r , t) can be related to the
probability that, if a particle at the origin has moved a distance
less than a during time t , another particle at distance r has also
moved a distance less than a in the same time t .

Note that 〈q(t)〉 = 〈∫ w(r)ρ(0, 0)ρ(�r , t) d�r〉 represents
the time-dependent order parameter which decays to zero in the
liquid and to a constant value different from zero in the glass.
Therefore G4 represents the fluctuations of the dynamical order
parameter and it is a good candidate to describe the right
correlation function.

3.1. Dynamical susceptibility

From the four-point correlation function in equation (3) one
obtains the dynamical susceptibility [8, 9]

χ4(t) =
∫

G4(�r , t) d�r . (4)

2
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Figure 2. Schematic behavior of the dynamical susceptibility, χ4(t),
in a typical glass former for decreasing temperature (from bottom to
top).

In the usual glassy systems χ4(t) grows as a function of
time, reaches a maximum and then decreases to a constant,
consistent with the transient nature of DH (see figure 2). As the
temperature decreases, the peak increases and shifts to longer
times.

Evidence of DH is found in many numerical simula-
tions [11, 12, 22–24] and experiments [7, 13, 19, 25–27].
Recently, DH have been detected in molecular supercooled
liquids and more directly measured in granular materials,
where the larger size of the particles makes the microscopic
length more easily accessible [28, 29].

3.2. Non-Gaussian parameter

Another measure of DH is the non-Gaussian parameter α2 [30]
defined as

α2(t) = 3�r 4(t)

5(�r 2(t))2
− 1, (5)

where �r 2(t) = 1
N

∑N
i=1〈|�ri (t) − �ri (0)|2〉 and �r 4(t) =

1
N

∑N
i=1〈|�ri (t) − �ri (0)|4〉. This is a measure of the departure

from the Gaussian behavior of the probability distribution of
particle displacements. In supercooled liquids, it has been
shown to reflect the presence of DH [10]: upon entering the
timescale typical of the caging, α2 starts to increase, reaches
a maximum at a time t∗ and decreases to its long-time limit,
0, on the timescale of the cage opening. Its maximum value
increases with decreasing T , due to the higher degree of
heterogeneity of the dynamics, whereas t∗ shifts to longer
times.

3.3. Dynamical heterogeneities and mode coupling theory

The cage picture has generated the idea that the dynamical
arrest described by MCT is governed by a short length
scale phenomenon, and therefore in contrast with the picture
emerging from the study of DH. However, DH in a glass
transition have been recently derived also within MCT, leading
to analytical predictions. Franz and Parisi [8] first introduced
the dynamical susceptibility in the context of mean field p-spin
glasses and showed that, within the schematic MCT, it becomes
critical at the mode coupling temperature TC. Connection
with more standard MCT was later done in [15, 16] (for more
developments see also [31, 32]). In this framework, detailed

predictions on the shape of the dynamical susceptibility are
obtained. In particular, it is found that χ4 ∼ ta in the
early-β regime, i.e. when the intermediate scattering function
approaches a plateau, and χ4 ∼ tb on the timescales between
the departure from the plateau and the peak of χ4. Finally,
the value of the peak χ4(t∗) is predicted to diverge at Tc with
a power law, χ4(t∗) ∼ (T − Tc)

−1. Due to the growth of
χ4 during the approach and the departure from the plateau,
the cage picture needs to be modified: rattling in the cage
is accompanied by a cooperative rearrangement of particles
which actually leads to the opening of the cage.

MCT also predicts a specific behavior for the non-
Gaussian parameter for a hard-sphere system [33], character-
ized by a maximum at a time t∗. The value of the maximum
of α2 slowly increases as the volume fraction approaches the
critical value, whereas the time t∗ shifts to longer times.

4. Dynamical heterogeneities in gels

The nature of slow dynamics and structural arrest phenomena
in gelling systems has been strongly debated in the rich
literature of the last few years. This is certainly due to the
relevance of understanding their rheological and mechanical
features in a number of technological applications but also to
the connection that these phenomena show with the glassy
dynamics observed in molecular liquids. In particular, one
of the most debated points is how intimate is the connection
between the slow dynamics/structural arrest and the structuring
typical of gelation. This question is particularly intriguing
in the case of attractive colloidal suspensions, where the
gelation results from nonpermanent bonding of the particles
in a transient network, making the understanding of the role of
gelation in the structural arrest even more elusive. A striking
feature is that in gels a growing structural length scale (e.g. the
one related to the growth of connectivity due to gelation) can be
readily identified, different from supercooled molecular liquids
where no structural length scale corresponding to the growing
size of DH could ever be found. That is why it is extremely
interesting to compare the complex relaxation dynamics and
the DH of these systems to the one of supercooled liquids.

In the following, we start from the case, relatively simpler,
of chemical gels where gelation is due to permanent bonds.
After analyzing the DH in these systems, we go to the case
of colloidal gels and we finally consider the crossover from
colloidal gelation to the hard-sphere colloidal glasses.

4.1. Dynamical heterogeneities in chemical gels

The transition from sol to gel is due to the onset of a spanning
cluster, giving rise to the divergence of the viscosity as the
transition is approached from the sol phase and to an elastic
modulus vanishing as the transition is approached from the gel
phase. Since the pioneering work of Flory [34, 35] chemical
gelation has been explained in terms of percolation models
(for a review see [36]). However, it is important to remark
that, different from the case of the liquid–gas transition, in this
percolation description of the gelation transition, the clusters
could never be associated with density fluctuations or to any
other directly detectable quantity.

3
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Figure 3. Dynamical susceptibility, χ4(k, t), in the FENE model, as
a function of time for k = kmin � 0.35 and different volume
fractions, φ = 0.05, 0.06, 0.07, 0.08 and 0.09 (from bottom to top).

We have recently investigated the problem with a suitable
model to study chemical gels by means of molecular
dynamics [37]. The model is a 3d system of N particles
interacting with a soft potential given by a Weeks–Chandler–
Andersen (WCA) potential [38]. After the equilibration,
particles spacing less than R0 are linked by adding an attractive
potential representing a finitely extendible nonlinear elastic
(FENE), first introduced in [39] and widely used to study
linear polymeric systems [40]. The introduction of the FENE
potential leads to the formation of permanent bonds among all
the particles whose distance at that time is lower than R0. For
alternatives models see also [41, 42] and more recently [43].
Our numerical simulations have shown a percolation transition
at volume fraction φc � 0.1, with critical exponents in
agreement with random percolation. In particular, the cluster
size distribution, n(s) ∼ s−τ , at φc with τ = 2.1 ± 0.2, the
mean cluster size S(φ) = ∑

s2n(s)/
∑

sn(s) ∼ (φc − φ)−γ

with γ = 1.8 ± 0.1, and the connectedness length ξ ∼
(φc − φ)−ν with ν = 0.88 ± 0.01.

At small wavevectors, the self-intermediate scattering
function 〈s(k, t)〉 = 〈 1

N

∑N
i=1 ei�k·(�ri (t)−�ri (0))〉 shows a

stretched exponential decay as a function of time before
the percolation threshold and a dynamical transition at
the threshold, characterized by the onset of a power law
decay. The relaxation time diverges as a power law as
the threshold is approached. These findings are consistent
with the experimental results [44] and other numerical
simulations [41, 42].

We have studied the dynamical susceptibility by
calculating the fluctuations of the self-intermediate scattering
function χ4(k, t) = N[〈|s (k, t)|2〉 − 〈s(k, t)〉2], where
〈. . .〉 is the thermal average for a fixed bond configuration
and [. . .] is the average over the bond configurations. The
wavelength k allows us to probe DH at different length scales.
We have calculated χ4 for fixed k and different volume fraction
φ. In figure 3 χ4(k, t) is plotted for k = kmin = 2π/L
and different φ, and in figure 4 χ4(k, t) is plotted at the
percolation threshold for different k. These figures show the

Figure 4. Dynamical susceptibility, χ4(k, t), in the FENE model, as
a function of time for φ = 0.09 and different wavevectors, k = 0.35,
0.6, 1, 1.4, 1.9 and 3.9 (from top to bottom).

striking difference of the dynamical susceptibility in chemical
gels from the one in glasses. For each value of the volume
fraction, χ4(k, t) reaches a plateau after a characteristic time
of the order of the relaxation time. We have been able to
show in [37] that in the limit of small k the asymptotic value
of χ4(k, t) coincides with the mean cluster size and verified it
numerically. Our results indicate that in permanent gels DH are
due to the presence of clusters of bonded particles. We could
also show, more generally, that χas(k, φ) = kη−2 f (kξ) where
2 − η = γ /ν. This remarkable result demonstrates that it is
possible to connect the percolation clusters to the asymptotic
value of the dynamical susceptibility. Not only does this
indicate that the percolation exponents can also be measured
by means of the asymptotic dynamical susceptibility, but it also
states that the asymptotic value of the dynamical susceptibility
plays the same role as the static scattering function near a
liquid–gas critical point.

Here we also investigate the behavior of the non-Gaussian
parameter. As shown in figure 5, in this case the difference
in the behavior observed in the chemical gel is also striking:
instead of displaying a maximum, α2 grows with time to a
plateau value. This behavior is qualitatively similar to the one
of χ4(kmin, t) reported above. However, even if α2 also tends to
a plateau, the value of the plateau does not diverge as a function
of (φc − φ). This indicates that α2 is not related to the mean
cluster size, which instead controls the asymptotic behavior of
χ4(kmin, t) [45].

4.2. Dynamical heterogeneities in colloidal gels

We have found that in chemical gels, where the structural
arrest is related to the formation of clusters of bonded particles,
the dynamical susceptibility can be directly connected to
the clusters. This has clarified the nature of the slow
dynamics/structural arrest in these gels as compared to hard-
sphere glasses, where bonds play no role. Very intriguing is the
case of gels formed in attractive colloids which are in between

4
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Figure 5. Non-Gaussian parameter, α2(t), in the FENE model, as a
function of time t for φ = 0.05, 0.07, 0.08, 0.09, 0.10, 0.11 and 0.12
(from bottom to top).

these two extremes. In these systems, upon tuning the strength
of the attractive interactions, one can go from an irreversible
gel, very similar to the chemical gel just described, to a
nonpermanent colloidal gel and finally to a hard-sphere glass.
Therefore, the study of DH in these systems might unveil new
behaviors arising in intermediate situations and shed new light
on the nature of the structural arrest transition. A numerical
study of the dynamical susceptibility in the attractive glass
region [23] has already shown a marked difference in the k
dependence of the maximum of χ4 as compared to the hard-
sphere glass. In the following, we discuss the behavior of
the dynamical susceptibility at low volume fractions, i.e. at
the crossover between the irreversible and the nonpermanent
colloidal gelation, and upon approaching the glassy region.

Colloids consist of suspensions of solid particles, whose
size may range from ∼5 nm and ∼0.2 μm. The suspension
being usually density-and index-matched, the particles behave
as hard spheres. Therefore at small volume fraction the
colloidal suspension will display the features of a normal
liquid. By increasing the volume fraction if one avoids
crystallization, the system undergoes a jamming transition due
to the crowding of the particles (for a classical paper on the
experimental study of colloidal hard spheres see [46]). The
addition of non-adsorbing polymers to the suspension induces
effective attractive interactions between the colloidal particles
due to depletion [47]. In this case, in the temperature–volume
fraction plane, the structural arrest line, i.e. where the jamming
transition occurs, typically interferes with the coexistence
curve [48]. Gelation may occur, due to an interrupted phase
separation which recently has been accurately studied in a
combined experimental and numerical effort [49] (for a review
on different roots to colloidal gelation see also [50]).

The presence of a long range repulsion between particles,
due for example to the presence of residual charges, may
suppress phase separation and avoid its interference with
gelation. A DLVO potential can be used to model this kind

Figure 6. Iso-diffusivity curves obtained in the DLVO model, in the
temperature–volume fraction plane, respectively, for D = 10−3, 10−4

and 10−5 (from top to bottom).

of effective interaction, as often seen in the literature [51, 52].
Actually, it has been shown that the competing attraction and
repulsion will favor ordered columnar and lamellar phases at
low temperatures [53, 54], therefore limiting the possibility
to study the metastable states associated with slow dynamics
and structural arrest. However, upon adding a small degree
of polydispersity, it is possible to avoid the ordered phases
and study the arrested line without such interference [55].
Figure 6 shows the iso-diffusivity curves in the temperature–
volume fraction plane, giving an estimate of the shape of the
structural arrest line. At high temperature the line of structural
arrest approaches the hard-sphere glass transition. In the low
temperature phase, particles tend to form strong bonds which
give rise to a macroscopic network, able to bear stress. The
arrested state exhibits a gel behavior (see [56] for experiments
and [53, 57] for numerical simulations; see also [50] and
references therein). However, if the temperature is not low
enough the bonds have a finite lifetime and particles can only
form a transient network. In this case, the structural arrest
will move towards higher volume fractions and display features
typical of attractive and hard-sphere glasses [55].

Figure 7 shows the relaxation time, calculated from
the self-intermediate scattering function at small wavevector,
together with the lifetime of the bonds τb. It indicates that at
low volume fraction the lifetime of the bonds is much longer
than the relaxation time. In fact, the relaxation time exhibits
a power law with an apparent divergence at the percolation
threshold, as in chemical gelation, i.e. as if the clusters
were due to permanent bonds. Consistently, such power law
divergence is not observed at higher temperatures where the
lifetime of the bonds and relaxation time are of the same order
of magnitude [41, 51].

The dynamical susceptibility, χ4(k, t), for the lowest
value of k is shown in figure 8: for small values of the
volume fraction, after a timescale of the order of τ , χ4(kmin, t)
reaches a plateau whose value is given roughly by the mean
cluster size. However, after a time of the order of the bond

5
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Figure 7. The structural relaxation time, τα(kmin) (circles), compared
with the bond relaxation time, τb (stars), for T = 0.15 and 0.25 (from
bottom to top). The continuous line is a power law fit (0.14 − φ)−3.8.

lifetime, χ4(kmin, t) decreases. For higher volume fraction
the difference between τ (kmin) and τb decreases and the
persistence of the plateau in time decreases until τ (kmin) and τb

are of the same order of magnitude and the plateau disappears.
In this case, χ4(kmin, t) eventually exhibits a maximum like
the one of hard-sphere glasses. These results demonstrate well
that, when the bond lifetime is long enough, as compared to
the relaxation time, the behavior of χ4 is the same as the
one measured in chemical gels, on timescales for which the
bonds can be considered as permanent. At longer times the
breaking of the clusters causes the final decay to zero. In fact,
a geometrical interpretation of χ4(kmin, t) in this system can be
given by considering a new cluster definition made of ‘mobile’
monomers, connected by bonds which are present at both time
zero and time t . The mobile monomers are particles which
have moved at least a suitable small distance r0.6 The mean
cluster size of such mobile clusters Sm(t) is a time-dependent
function which will decrease in the limit of large t when the
bonds starts to break. At t = 0, Sm(t) = 0 since particles
have not moved. In the inset of figure 8 Sm(t) is plotted
for volume fractions φ = 0.01 and 0.12. At low volume
fraction the coincidence of χ4(kmin, t) and Sm(t) is excellent.
At higher volume fraction the maximum of χ4(kmin, t) is larger
than the maximum of Sm(t), denoting that the contribution to
the peak comes not only from the cluster formation but also
from the crowding of the particles, typical of the hard-sphere
glasses. The figure well exemplifies that there are two different
mechanisms underlying the presence of significant DH at
different volume fractions. It also shows clear evidence of the
crossover from the cluster-dominated regime to a crowding-
dominated regime.

6 For each volume fraction, we fix r0 so that Sm(t) and χ4(kmin, t) start to
grow at the same time.

Figure 8. Main frame: the fluctuations of the self-ISF, χ4(kmin, t),
obtained in the DLVO model, for T = 0.15 and φ = 0.01, 0.05,
0.08, 0.10, 0.11 and 0.12 (from left to right). Inset: χ4(kmin, t)
(circles) compared with the time-dependent mean cluster size Sm(t)
of mobile particles (void circles), for T = 0.15 and φ = 0.01 and
0.12.

5. Conclusions

The study of DH allows us to clarify the nature of slow
dynamics and structural arrest observed in gels and glasses.
The behavior of the dynamical susceptibility, which describes
the DH, in chemical gelation is quite different from that found
in hard-sphere glasses. It grows steadily and reaches a plateau
whose value coincides with the mean cluster size in the low
wavevector limit. In particular, the low wavevector signal is
able to detect the critical behavior of the system at the gelation
transition. The large wavevector signal, as well as measures of
DH based on single-particle diffusion, is dominated by finite
clusters and is not sensitive enough to the gelation. In colloidal
gelation at low T , DH are associated with clusters made of long
living bonds and the dynamical susceptibility reaches a plateau
as found in chemical gels, except that, at long time, it decays
to zero due to the finite lifetime of the clusters. At higher
volume fraction the DH cross over to a different behavior
where crowding effects start to dominate. This difference
actually gives rise to the different dynamical behaviors found
in gels and glasses. Whether and how it is possible to also
geometrically characterize the type of DH typical of glasses is
still an open question.
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